Pyrophosphito-Bridged Diplatinum Chemistry ${ }^{\dagger}$

D. Max Roundhill*
Department of Chemistry, Tulane University, New Orleans, Louisiana 70118

Harry B. Gray*
Arthur Amos Noyes Laboratory, California Institute of Technology, Pasadena, California 91125

Chi-Ming Che*
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong
Received April 25, 1988 (Revised Manuscript Received October 24, 1988)

Square-planar platinum(II) complexes have long been known to exhibit metal-metal interactions in the solid state. ${ }^{1}$ These intermetallic interactions can be sufficiently strong that even ions of the same charge can associate in solution media of high dielectric constant. Although unbridged oligomeric metal complexes are not found exclusively in platinum chemistry, they do occur mainly for square-planar metal ions, because the vacant axial coordination sites allow the metal centers to approach each other closely. Assuming that the ligands lie in the $x y$ plane, the relative d-orbital energies are $\mathrm{d}_{x y},\left(\mathrm{~d}_{x z}, \mathrm{~d}_{\mathrm{y}_{2}}\right)<\mathrm{d}_{z^{2}} \ll \mathrm{~d}_{x^{2}-y^{2}}$ in a planar d^{8} monomer containing π acceptor ligands. ${ }^{2}$ Approach along the axial direction causes the valence $\mathrm{d}_{2^{2}}$ orbitals to overlap to give bonding ($\mathrm{d} \sigma$) and antibonding ($\mathrm{d} \sigma^{*}$) orbitals. The orbital energy level diagram shown in Figure 1 has been useful in interpreting the ground- and excitedstate properties of binuclear rhodium(I), iridium(I), and platinum(II) complexes. ${ }^{3}$
Intermetallic interactions in platinum complexes can extend beyond dimers into materials that exhibit higher oligomeric units. Two of the better known properties associated with these chain interactions are the anisotropic conductivity of $\mathrm{K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right] \mathrm{Cl}_{0.3}$ and the intense absorption of the platinum blues. ${ }^{4}$ In each case, the chain axis stabilizes a complex that has partial valence at platinum. Such materials can be viewed as intermediate structures in the transition from a discrete complex to a metallic state. ${ }^{5}$
Both oxidation (to $\mathrm{d}^{7}-\mathrm{d}^{8}$ or $\mathrm{d}^{7}-\mathrm{d}^{7}$ complexes) and reduction (to $\mathrm{d}^{8}-\mathrm{d}^{8} \mathrm{p} \sigma^{1}$ or $\mathrm{d}^{8}-\mathrm{d}^{8} \mathrm{p} \sigma^{2}$ species) lead to enhanced metal-metal bonding in the dimeric units. Accordingly, the sulfato-bridged diplatinum(III) ($\mathrm{d}^{7}-\mathrm{d}^{7}$) complex, $\mathrm{K}_{2}\left[\mathrm{Pt}_{2}\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, exhibits a short (2.471 (1) \AA) $\mathrm{Pt}-\mathrm{Pt}$ distance. Other diplatinum(III) compounds with relatively short $\mathrm{Pt}-\mathrm{Pt}$ bonds contain α -

[^0]pyridone, hydrogen phosphate, or trifluoroacetate bridging groups. ${ }^{6}$ Although individual $\mathrm{Pt}-\mathrm{Pt}$ separations are primarily determined by the bridging bite angle of the equatorial ligands, the shortening in the $\mathrm{Pt}-\mathrm{Pt}$ distance on going from $\mathrm{d}^{8}-\mathrm{d}^{8}$ to $\mathrm{d}^{7}-\mathrm{d}^{7}$ in the α-pyridone- and dithioacetate-bridged complexes supports the molecular orbital model. ${ }^{7}$ Reviews of work on diplatinum complexes give further examples. ${ }^{8}$ Structural data for the mixed-valence $\mathrm{d}^{7}-\mathrm{d}^{8}$ complexes are fewer, but those available show that there is again a shortening of the $\mathrm{Pt}-\mathrm{Pt}$ distance from the $\mathrm{d}^{8}-\mathrm{d}^{8}$ precursor. ${ }^{9}$
The most widely studied diplatinum(II) complex is $\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}{ }^{4-}$ (abbreviated Pt_{2}), which contains bridging (P, P-bonded) pyrophosphito ligands. The excited-state chemistry exhibited by Pt_{2} is probably the richest of all $\mathrm{d}^{8}-\mathrm{d}^{8}$ complexes. Photophysical studies confirm that the properties of the photoactive excited state are a manifestation of $\mathrm{d}^{8}-\mathrm{d}^{8}$ metal-metal interactions. Here we will devote much attention to the photochemistry of Pt_{2}, because the observed reactions with substrates include rare examples of atom abstractions in addition to electron transfers and other

[^1]

Figure 1. Orbital energy level diagram for interaction (face-toface) of two d^{8} square-planar units along the metal-metal axis. The structure of $\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}{ }^{4-}\left(\mathrm{Pt}_{2}\right)$ is shown.
well-studied inorganic excited-state processes.

Synthesis and Spectroscopy

The diplatinum(II) complex $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]$, which is often referred to as "platinum pop", is prepared from $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and phosphorous acid. ${ }^{10}$ The initially formed P -bonded complex $\mathrm{Pt}\left(\mathrm{OP}(\mathrm{OH})_{2}\right)_{4} \mathrm{H}_{2}$ undergoes intermolecular condensation at $100^{\circ} \mathrm{C}$ in the reaction mixture to give the bridged P, P-pyrophosphito complex $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]$ (reaction 1). Heating to $170^{\circ} \mathrm{C}$

$$
\begin{array}{r}
2 \mathrm{~K}_{2} \mathrm{PtCl}_{4}+8 \mathrm{H}_{3} \mathrm{PO}_{3} \rightarrow 2 \mathrm{Pt}\left(\mathrm{OP}(\mathrm{OH})_{2}\right)_{4} \mathrm{H}_{2}+4 \mathrm{KCl}+ \\
4 \mathrm{HCl} \rightarrow \mathrm{~K}_{4}\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]+8 \mathrm{HCl}+4 \mathrm{H}_{2} \mathrm{O}(1) \tag{1}
\end{array}
$$

gives a higher oligomer $\left\{\mathrm{K}_{4}\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]\right\}_{n}$, although this product has not been fully characterized. The single-crystal X-ray structure of $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]$. $2 \mathrm{H}_{2} \mathrm{O}$ shows the anion with an eclipsed "lantern" type structure having planar platinum(II) centers linked by $\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}{ }^{2-}$ groups. The anion has a $\mathrm{Pt}-\mathrm{Pt}$ separation of 2.925 (1) \AA with no ligands bonded to the axial sites. ${ }^{11}$ The complex is a dibasic acid ($\mathrm{p} K_{\mathrm{a} 1} 2.24, \mathrm{p} K_{\mathrm{a} 2} 6.95$). ${ }^{12}$ Replacement of the potassium cations with tetra- n butylammonium or bis(triphenylphosphine)nitrogen(1+) $\left(\mathrm{PPN}^{+}\right)$gives salts of $\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}{ }^{-4}$ that are soluble in nonaqueous solvents.

The Pt_{2} complex has electronic absorption bands at 367 ($\log \epsilon 4.54$) and $435 \mathrm{~nm}(\log \epsilon 2.04)$ that are attributable to singlet and triplet $\mathrm{d} \sigma^{*} \rightarrow \mathrm{p} \sigma$ transitions, respectively. ${ }^{13}$ An unusual feature of the complex is that aqueous solutions show an intense green emission

[^2]

Figure 2. Absorption (一, ϵ scale) and corrected emission (---) spectra of Pt_{2} (K^{+}salt in aqueous solution at $25^{\circ} \mathrm{C}$). ${ }^{13}$
at 514 nm at ambient temperature. This phosphorescence at $514 \mathrm{~nm}(\tau \sim 9 \mu \mathrm{~s})$ from a triplet excited state is accompanied by a shorter lived fluorescence ($8-40 \mathrm{ps}$) at 407 nm (Figure 2). ${ }^{13,14}$

Extensive spectroscopic experiments on Pt_{2} have further elucidated the $\mathrm{d} \sigma^{*} \rightarrow \mathrm{p} \sigma$ excited states. ${ }^{13-18}$ Examination of the low-temperature phosphorescence shows that the ${ }^{3} \mathrm{~A}_{2 \mathrm{u}}$ level is split into a lower A_{14} and a higher energy E_{u} state separated by $\sim 42 \mathrm{~cm}^{-1} .{ }^{13,15}$ The application of a magnetic field ($0-4 \mathrm{~T}$) causes both a blue shift of the phosphorescence wavelength and an increase in peak intensity. ${ }^{14}$ The electronic structure and spectra of Pt_{2} have been calculated by using a nonempirical self-consistent extended Hückel method. ${ }^{19}$ The calculation supports the spectral assignments but suggests that an electronic structural model involving only Pt orbitals is not adequate for a quantitative rationalization of the properties of Pt_{2}.

Two applications of Pt_{2} have been suggested. One is in the trace detection of platinum. The $514-\mathrm{nm}$ emission intensity is linear with concentration, and emission has been detected at 77 K from solutions containing only 4 parts per trillion platinum. ${ }^{20}$ A second possible use is in the fabrication of luminescent solar concentrators. ${ }^{21}$
(14) Cox, A.; Kemp, T. J.; Reed, W. J.; Traverso, O., unpublished results reported in the following: Kemp, T. J. Prog. React. Kinet. 1980 , 10, 301-398. Markert, J. T.; Clements, D. P.; Corson, M. R.; Nagle, J. K. Chem. Phys. Lett. 1983, 97, 175-179. Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4571-4575. Bär, L.; Gliemann, G. Chem. Phys. Lett. 1984, 108, 14-17. Reisch, G. A.; Turner, W. A.; Corson, M. R.; Nagle, J. K. Chem. Phys. Lett. 1985, 117, 561-565. Stiegman, A. E.; Rice, S. F.; Gray, H. B.; Miskowski, V. M. Inorg. Chem. 1987, 26, 1112-1116. Fetterolf, M.; Friedman, A. E.; Yang, Y. Y.; Offen, H.; Ford, P. C. J. Phys. Chem. 1988, 92, 3760-3763.
(15) Brummer, J. G.; Crosby, G. A. Chem. Phys. Lett. 1984, 112, 15-19. Tanaka, Y.; Azumi, T. Inorg. Chem. 1986, 25, 247-248. Shimizu, Y.; Tanaka, Y.; Azumi, T. J. Phys. Chem. 1985, 89, 1372-1374.
(16) Shimizu, Y.; Tanaka, Y.; Azumi, T. J. Phys. Chem. 1984, 88, 2423-2425.
(17) Parker, W. L.; Crosby, G. A. Chem. Phys. Lett. 1984, 105, 544-546.
(18) Isci, H.; Mason, W. R. Inorg. Chem. 1985, 24, 1761-1765.
(19) Boudreaux, E. A.; Doussa, S. J.; Klobukowski, M. Int. J. Quantum Chem. 1986, 20, 239-252.
(20) Dickson, M. K.; Pettee, S. F.; Roundhill, D. M. Anal. Chem. 1981, 53, 2159-2160.
(21) Roundhill, D. M. Sol. Energy 1986, 36, 297-299.

Oxidative Addition

The complex Pt_{2} undergoes thermal two-electron two-center oxidative addition of halogens or alkyl iodides to give axially substituted diplatinum(III) complexes $\mathrm{Pt}_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ or $\mathrm{Pt}_{2} \mathrm{RI}(\mathrm{R}=\text { alkyl) })^{22}$ Mechanistic studies with methyl iodide show that the reaction follows an associative pathway and that the rate is unperturbed by added external nucleophile. ${ }^{23}$ These diamagnetic $\mathrm{Pt}_{2} \mathrm{X}_{2}$ and $\mathrm{Pt}_{2} \mathrm{RI}$ products have an intermetallic bond joining the diplatinum(III) centers. ${ }^{22,24}$ Diplatinum(III) species of these types also can be synthesized by the oxidation of Pt_{2} in the presence of excess halide ion. The chemical oxidants that have been used include $\mathrm{Ce}^{4+}, \mathrm{IrCl}_{6}{ }^{2-}, \mathrm{PtCl}_{6}{ }^{2-}, \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$, $\mathrm{Co}(\mathrm{EDTA})^{-}, \mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}$, and $\mathrm{H}_{2} \mathrm{O}_{2}$; electrochemical anodic oxidation also has been employed. ${ }^{25}$ Kinetic studies show that the rate law for chemical oxidation is $k\left[\mathrm{Pt}_{2}\right]\left[\mathrm{X}^{-}\right]$, where k increases with the nucleophilicity of X^{-}. This oxidation reaction is reversible, with Pt_{2} being regenerated from $\mathrm{Pt}_{2} \mathrm{X}_{2}$ by the addition of H_{2}, $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{SO}_{3}{ }^{2-}$, or ascorbic acid or by cathodic reduction. When the reaction between Pt_{2} and X^{-}is followed by UV-vis spectroscopy using an OTTLE cell, the reversible $\mathrm{Pt}_{2} / \mathrm{Pt}_{2} \mathrm{X}_{2}$ conversion occurs with a single isosbestic point and no detectable intermediates. ${ }^{26}$ The reactivity of Pt_{2} to one-electron oxidants is exemplified by the reversible addition of NO_{2} to give $\mathrm{Pt}_{2}\left(\mathrm{NO}_{2}\right)_{2}$ (reaction 2). The N -bonded adduct reverts to Pt_{2} in

$$
\begin{equation*}
\mathrm{Pt}_{2}+2 \mathrm{NO}_{2} \rightleftarrows \mathrm{Pt}_{2}\left(\mathrm{NO}_{2}\right)_{2} \tag{2}
\end{equation*}
$$

the absence of excess $\mathrm{NO}_{2}{ }^{27}$ Chemical or anodic oxidation routes have been used to prepare $\mathrm{Pt}_{2}(\mathrm{SCN})_{2}$, $\mathrm{Pt}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}, \mathrm{Pt}_{2}(\mathrm{MeCN})_{2}{ }^{2+}$, and $\mathrm{Pt}_{2}(\text { imidazole })_{2}{ }^{2+} .{ }^{28}$

Mixed-Valence Complexes

Halogen addition occurs by a two-step reaction where the first product is the mixed-valence complex $\mathrm{Pt}_{2} \mathrm{X}$ (X $=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$), which can be isolated in the solid state. With excess halogen, $\mathrm{Pt}_{2} \mathrm{X}_{2}$ is formed. In aqueous solution, disproportionation of $\mathrm{Pt}_{2} \mathrm{X}$ occurs. ${ }^{12}$ The sol-id-state structure of $\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{Br}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ at ambient temperature shows an infinite $\mathrm{Pt}-\mathrm{Pt}-\mathrm{Br}$ linear chain with the bromide symmetrically bonded between Pt_{2} units. ${ }^{9}$ The $\mathrm{Pt}-\mathrm{Pt}$ distance in $\mathrm{Pt}_{2} \mathrm{Br}$ is intermediate between those found in Pt_{2} and $\mathrm{Pt}_{2} \mathrm{Br}_{2}$. For $\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{Cl}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, however, the bridging chloride is disordered over two sites to give alternately short (2.367 (7) \AA) and long (2.966 (8) \AA) $\mathrm{Pt}-\mathrm{Cl}$ bonds. ${ }^{29}$ The low-temperature (19

[^3]Table I
Structural Data

complex	$\underset{\AA}{d(\mathrm{Pt}-\mathrm{Pt}),}$	$d(\mathrm{Pt}-\mathrm{X})$ axial, \AA	ref
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2.925 (1)	-	11
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2.695 (1)	2.407 (2)	22
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{Br}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2.723 (4)	2.555 (5)	29
$\left[\mathrm{Bu}_{4} \mathrm{~N}\right]_{4}\left[\mathrm{Pt}_{2} \mathrm{Br}_{2}\right)$	2.716 (1)	2.572 (1)	24
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{I}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2.754 (1)	2.746 (1)	24
$\mathrm{K}_{2}\left[\mathrm{Bu}_{4} \mathrm{~N}_{2}\left[\mathrm{Pt}_{2} \mathrm{I}_{2}\right]\right.$	2.742 (1)	2.721 (1)	24
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] \cdot 2 \mathrm{KNO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2.754 (1)	2.147 (6)	28
$\mathrm{Na}_{8}\left[\mathrm{Pt}_{2}(\mathrm{pop}-\mathrm{H})_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$	2.7333 (2)	2.153 (6)	27
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2}(\mathrm{SCN})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	2.760 (1)	2.466 (4)	28
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2}\right.$ (imidazole) $\left.{ }_{2}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$	2.745 (1)	2.13 (2)	28
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{CH}_{3} \mathrm{I}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2.782 (1)	$\begin{aligned} & 2.18(3)(\mathrm{Pt}-\mathrm{C}), \\ & 2.816(3)(\mathrm{Pt}-\mathrm{I}) \end{aligned}$	22
$\left[\mathrm{Bu}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{Pt}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$	2.676 (1)	2.093 (10)	28
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{Cl}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	2.813 (1)	$\begin{aligned} & 2.966(8) \\ & 2.367(7) \end{aligned}$	29
$\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{Br}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	2.793 (1)	2.699 (1)	9

Table II
Electronic Spectral Data ${ }^{a}$

complex	$\lambda_{\text {max }}, \mathrm{nm}$	$\log \epsilon$	ref
Pt_{2}	367, 435	4.54, 2.04	13
$\mathrm{Pt}_{2} *\left({ }^{3} \mathrm{~A}_{2 \mathrm{u}}\right)$	325, 460	-, -	13, 14, 43
$\mathrm{Pt}_{2} \mathrm{Cl}$	330	-	32
$\mathrm{Pt}_{2} \mathrm{Br}$	370	-	32
$\mathrm{Pt}_{2} \mathrm{SCN}$	390	-	32
$\mathrm{Pt}_{2} \mathrm{~L}$	310	-	32
$\mathrm{Pt}_{2} \mathrm{H}$	~ 360	-	43, 45
$\mathrm{Pt}_{2}{ }^{+}$	310	4.88	32
$\mathrm{Pt}_{2}{ }^{-}$	420	-	37
$\mathrm{Pt}_{2}{ }^{2-}$	373, 413, 459	3.98, 4.00, 4.11	38
$\mathrm{Pt}_{2} \mathrm{Cl}_{2}$	282, 345, 390	4.68, 3.91, -	22
$\mathrm{Pt}_{2} \mathrm{Br}_{2}$	305, 345	$4.74,4.07$	22
$\mathrm{Pt}_{2} \mathrm{I}_{2}$	338, 435	4.63, 4.20	22
$\mathrm{Pt}_{2} \mathrm{H}_{2}$	313	~ 4.5	48
$\mathrm{Pt}_{2}\left(\mathrm{NO}_{2}\right)_{2}$	312, 360, 470	4.34, 4.08, 2.81	28
$\mathrm{Pt}_{2}(\mathrm{SCN})_{2}$	337, 480	4.64, 2.87	28
$\mathrm{Pt}_{2} \mathrm{BrCl}$	296, 350	4.59, 3.98	12, 25
$\mathrm{Pt}_{2} \mathrm{ICl}$	313	4.61	12, 25
$\mathrm{Pt}_{2} \mathrm{IBr}$	316	4.72	12, 25
$\mathrm{Pt}_{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)^{+}$	267	4.54	23
$\mathrm{Pt}_{2} \mathrm{Br}\left(\mathrm{H}_{2} \mathrm{O}\right)^{+}$	283	4.67	23
$\mathrm{Pt}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}$	245, 320	4.40, -	28
$\mathrm{Pt}_{2}(\mathrm{MeCN})_{2}{ }^{2+}$	211	4.67	28
$\mathrm{Pt}_{2} \mathrm{~L}_{2}{ }^{2+}$	$\begin{aligned} & 250,275, \\ & 304,360 \end{aligned}$	$\begin{aligned} & \text { 4.52, 4.24, } \\ & 3.83,2.60 \end{aligned}$	28

${ }^{a}$ Units of ϵ are $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$; $\mathrm{L}=$ imidazole, 1-methylimidazole; see references for solvents and other conditions.
K) structure of $\mathrm{K}_{4}\left[\mathrm{Pt}_{2} \mathrm{Br}\right]$, however, also shows unequal $\mathrm{Pt}-\mathrm{Br}$ distances (2.579 and $2.778 \AA$). Calculations on these mixed-valence complexes show that Peierls distortions are not as favored for chains of binuclear platinum units as they are for mononuclear chains. ${ }^{30}$ The bromo complex has a high electrical conductivity in the semiconductor range ($\sigma_{\|}=10^{-4}-10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$) ${ }^{9}$ Dichroic or metallic green crystals of $\left[\mathrm{Pt}^{\mathrm{II}}(\mathrm{en})_{2}\right]\left[\mathrm{Pt}^{\mathrm{IV}}\right.$. (en) $\left.{ }_{2} \mathrm{X}_{2}\right]\left[\mathrm{Pt}^{\mathrm{III}} \mathrm{X}_{2}\right]$ also have been prepared from the reaction of $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{X}_{2}\right] \mathrm{X}_{2}(\mathrm{X}=\mathrm{Br}, \mathrm{I})$ with $\mathrm{Pt}_{2} .{ }^{31}$
The mixed-valence complexes $\mathrm{Pt}_{2} \mathrm{X}$ can be detected in solution as transients from either the oxidation of Pt_{2} or the reduction of $\mathrm{Pt}_{2} \mathrm{X}_{2}$. Three routes used to prepare $\mathrm{Pt}_{2}{ }^{+}$complexes are the oxidation of Pt_{2} with hydroxyl radicals, the reduction of $\mathrm{Pt}_{2} \mathrm{X}_{2}$ with hydrated electrons, and the biphotonic ionization of $\mathrm{Pt}_{2}{ }^{32}$
(30) Butler, L. G.; Zietlow, M. H.; Che, C.-M.; Schaefer, W. P.; Sindhar, S.; Grunthaner, P. J.; Swanson, B. I.; Clark, R. J. H.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 1155-1162. Whangbo, M.-H.; Canadell, E. Inorg. Chem. 1986, 25, 1726-1728.
(31) Clark, R. J. H.; Kurmoo, M. J. Chem. Soc., Dalton Trans. 1985, 579-585.

Intermetallic Bonding

The structural data for $\mathrm{Pt}_{2} \mathrm{X}_{2}$ show a shortening of the $\mathrm{Pt}-\mathrm{Pt}$ separation from Pt_{2} because of the presence of a Pt (III) $-\mathrm{Pt}(\mathrm{III})$ single bond in $\mathrm{Pt}_{2} \mathrm{X}_{2}$. Electron donation from the axial ligand X^{-}in $\mathrm{Pt}_{2} \mathrm{X}_{2}$ into the $\mathrm{Pt}-\mathrm{Pt} d \sigma^{*}$ orbital causes a variation of distance with axial ligand. The donor ability for X^{-}to platinum follows the sequence $\mathrm{SCN}^{-} \sim \mathrm{I}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}$, which correlates with the $\mathrm{Pt}-\mathrm{Pt}$ distances (Table I). ${ }^{22,24,27-29}$ The long $\mathrm{Pt}-\mathrm{X}$ distances are due to the large trans influence of the $\mathrm{Pt}-\mathrm{Pt}$ bond. This lengthening is expected, since the Pt orbitals involved in intermetallic bonding ($5 \mathrm{~d}_{z^{2}}$ and $6 \mathrm{p}_{z}$) also are employed in the attachment of the axial ligand.

Electronic spectral data for $\mathrm{Pt}_{2} \mathrm{X}_{2}$ and $\mathrm{Pt}_{2} \mathrm{~L}_{2}{ }^{2+}$ complexes are collected in Table II. Each complex shows an intense absorption ($\log \epsilon \approx 4.34-4.8$) in the UV region. For $\mathrm{Pt}_{2} \mathrm{X}_{2}$, where X is an anionic ligand, this absorption band is primarily due to an LMCT ($\mathrm{X} \rightarrow$ $\mathrm{Pt})$ transition. For $\mathrm{Pt}_{2} \mathrm{~L}_{2}{ }^{2+}$ complexes, with neutral ligands L, the axial ligand is a poorer donor, and the absorption bands are due to the $\mathrm{d} \sigma \rightarrow \mathrm{d} \sigma^{*}$ transition of the $\mathrm{Pt}-\mathrm{Pt}$ bond. These spectroscopic data give a donor order to platinum(III) of $\mathrm{SCN}^{-} \sim \mathrm{I}^{-}>\mathrm{NO}_{2}^{-}>$ $\mathrm{Br}^{-}>\mathrm{Cl}^{-}$, the same as that found from the structural data. X-ray photoelectron spectroscopy shows a $1-\mathrm{eV}$ increase in $\mathrm{Pt} 4 f_{7 / 2}$ binding energies on going from Pt_{2} to $\mathrm{Pt}_{2} \mathrm{X}_{2}{ }^{28}$

The aqueous-solution Raman spectra of $\mathrm{Pt}_{2} \mathrm{X}_{2}$ exhibit strong bands due to $\nu(\mathrm{Pt}-\mathrm{Pt})$ and $\nu(\mathrm{Pt}-\mathrm{X})(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I). Under resonance Raman conditions, long, nearly harmonic progressions are seen in $\nu(\mathrm{Pt}-\mathrm{Pt})$; indeed, for $\mathrm{Pt}_{2} \mathrm{I}_{2}$, the progression reaches as far as $12 \nu .^{33}$ Forcefield analyses using both two-center $\left(\mathrm{Pt}_{2}\right)$ and fourcenter $\left(\mathrm{Pt}_{2} \mathrm{X}_{2}\right)$ models suggest minimal intermetallic bonding in Pt_{2} and a single $\mathrm{Pt}-\mathrm{Pt}$ bond in $\mathrm{Pt}_{2} \mathrm{X}_{2}$. The small force constants for the $\mathrm{Pt}-\mathrm{X}$ stretch are consistent with the long $\mathrm{Pt}-\mathrm{X}$ distances. The $\mathrm{Pt}-\mathrm{Pt}$ distance in the triplet excited state $\left(\mathrm{Pt}_{2}{ }^{*}\right)$ is estimated by using Badger's rule to be $2.75 \AA .{ }^{34}$ This value agrees with those estimated from analyses of the vibrational fine structure of the low-temperature absorption (367 nm) and emission (514 nm) bands and from a time-resolved Raman experiment. ${ }^{14,15,35}$ This distance corresponds closely with those found in $\mathrm{Pt}_{2} \mathrm{X}_{2}$; the increased intermetallic bonding in Pt_{2} * is readily rationalized, since the excited state arises from transfer of an electron from an antibonding ($\mathrm{d} \sigma^{*}$) to a bonding ($\mathrm{p} \sigma$) level.

Conversion of Pt_{2} into $\mathrm{Pt}_{2} \mathrm{X}_{2}$ causes an upfield shift of 40 ppm in the ${ }^{31} \mathrm{P}$ NMR resonance and a decrease in ${ }^{1} J(\mathrm{PtP})$ of 1000 Hz . Spectral simulation indicates much larger ${ }^{1} J(\mathrm{PtPt})$ values $(\sim 9000 \mathrm{~Hz})$ in $\mathrm{Pt}_{2} \mathrm{X}_{2}$ than in $\mathrm{Pt}_{2}(800 \mathrm{~Hz})$. This increased value of ${ }^{1} J(\mathrm{PtPt})$ in $\mathrm{Pt}_{2} \mathrm{X}_{2}$ is due to the stronger intermetallic bond. ${ }^{36}$
(32) Roundhill, D. M.; Atherton, S. J. J. Am. Chem. Soc. 1986, 108, 6829-6831. Che, C.-M.; Gray, H. B.; Atherton, S. J.; Lee, W. M. J. Phys. Chem. 1986, 90, 6747-6749. Cho, K. C.; Che, C.-M. Chem. Phys. Lett. 1986, 124, 313-316.
(33) Clark, R. J. H. ACS Symp. Ser. 1986, No. 307, 57-65. Kurmoo, M.; Clark, R. J. H. Inorg. Chem. 1985, 24, 4420-4425.
(34) Stein, P.; Dickson, M. K.; Roundhill, D. M. J. Am. Chem. Soc. 1983, 105, 3489-3494. Stein, P. In Raman Spectroscopy: Linear and Nonlinear, Proceedings of the International Conference on Raman Spectroscopy, 8th; Lascombe, J., Huong, P. V., Eds.; Wiley Heyden Publishers: 1982; pp 651-652.
(35) Che, C.-M.; Butler, L. G.; Gray, H. B.; Crooks, R. M.; Woodruff, W. H. J. Am. Chem. Soc. 1983, 105, 5492-5494.
(36) King, C.; Fronczek, F. R.; Roundhill, D. M. J. Chem. Soc., Dalton Trans. 1987, 2769-2780.

Table III
Rate Constants for the Reactions of Amines with $\mathrm{Pt}_{\mathbf{2}}{ }^{*}$

amine	$E_{1 / 2}(\mathrm{ox})$, V	$k_{\mathrm{q}}{ }^{a}{ }^{a}$ $\mathrm{M}^{-1} \mathrm{~s}^{-1}$
$N, N, N^{\prime}, N^{\prime}$-tetramethyl-	0.11	1.2×10^{10}
1,4-benzenediamine		
$N, N, N^{\prime}, N^{\prime}$-tetramethyl-	0.36	3.0×10^{9}
(1,1'-biphenyl)-4,4'-diamine		
N, N-trimethylbenzenamine	0.71	3.9×10^{7}
N, N-dimethylbenzenamine	0.78	1.2×10^{7}
N, N-diphenylbenzenamine	0.92	1.5×10^{6}
${ }^{a}$ In MeOH at $25^{\circ} \mathrm{C}$; ref 40.		

Reduced $\mathbf{P t}_{2}$ Species

Aqueous solutions of Pt_{2} react with hydrated electrons to give the one-electron-reduced complex, $\mathrm{Pt}_{2}{ }^{-}$ ($\lambda_{\max } 420 \mathrm{~nm}$). ${ }^{37}$ This reduced complex presumably has the electronic configuration $(\mathrm{d} \sigma)^{2}\left(\mathrm{~d} \sigma^{*}\right)^{2}(\mathrm{p} \sigma)^{1}$. Reaction of Pt_{2} with chromous ion also has been reported, but the product has not been identified. ${ }^{38}$

Ligand Substitution

Aqueous solutions of halogens $\mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ react with Pt_{2} to give the mixed aquo/halide complexes $\mathrm{Pt}_{2} \mathrm{X}\left(\mathrm{H}_{2} \mathrm{O}\right)^{+}$(reaction 3). ${ }^{23}$ The mixed $\mathrm{Pt}_{2} \mathrm{XY}(\mathrm{X} \neq$

$$
\begin{equation*}
\mathrm{Pt}_{2}+\mathrm{X}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Pt}_{2} \mathrm{X}\left(\mathrm{H}_{2} \mathrm{O}\right)^{+}+\mathrm{X}^{-} \tag{3}
\end{equation*}
$$

$\mathrm{Y}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ complexes are prepared in acid solution by a complementary redox reaction between $\mathrm{Pt}_{2} \mathrm{X}_{2}$ and $\mathrm{Y}_{2}(\mathrm{X}=\mathrm{I}, \mathrm{Br}, \mathrm{Y}=\mathrm{Cl} ; \mathrm{X}=\mathrm{I}, \mathrm{Y}=\mathrm{Cl}, \mathrm{Br})($ reaction 4$) .{ }^{12}$

$$
\begin{equation*}
\mathrm{Pt}_{2}+\mathrm{Y}_{2}+\mathrm{X}^{-} \rightarrow \mathrm{Pt}_{2} \mathrm{XY}+\mathrm{Y}^{-} \tag{4}
\end{equation*}
$$

Alternatively, $\mathrm{Pt}_{2} \mathrm{ICl}$ is prepared from $\mathrm{Pt}_{2} \mathrm{CH}_{3} \mathrm{I}$ and $\mathrm{IrCl}_{6}{ }^{2-}$ with Cl^{-}(reaction 5). ${ }^{23}$ These complexes un-

$$
\begin{equation*}
\mathrm{Pt}_{2} \mathrm{CH}_{3} \mathrm{I}+\mathrm{Cl}^{-}+\mathrm{IrCl}_{6}^{2-} \rightarrow \mathrm{Pt}_{2} \mathrm{ICl}+\mathrm{IrCl}_{6}^{3-}+{ }^{\circ} \mathrm{CH}_{3} \tag{5}
\end{equation*}
$$

dergo disproportionation at higher pH to $\mathrm{Pt}_{2} \mathrm{X}_{2}$ and $\mathrm{Pt}_{2} \mathrm{Y}_{2}$.

Kinetics of the anation reactions of $\mathrm{Pt}_{2} \mathrm{X}\left(\mathrm{H}_{2} \mathrm{O}\right)^{+}$and the substitution reactions of $\mathrm{Pt}_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ can be interpreted in terms of several mechanisms. The rate law for the reaction of $\mathrm{Pt}_{2} \mathrm{X}\left(\mathrm{H}_{2} \mathrm{O}\right)^{+}$with anions $\mathrm{Y}^{-}(\mathrm{X}$ $=\mathrm{Cl}, \mathrm{Br} ; \mathrm{Y}=\mathrm{Br}, \mathrm{I}, \mathrm{SCN}$) (reaction 6) is $k\left[\mathrm{Pt}_{2} \mathrm{X}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)^{+}\right]\left[\mathrm{Y}^{-}\right]$. The rate is not accelerated by added Pt_{2},

$$
\begin{equation*}
\mathrm{Pt}_{2} \mathrm{X}\left(\mathrm{H}_{2} \mathrm{O}\right)^{+}+\mathrm{Y}^{-} \rightarrow \mathrm{Pt}_{2} \mathrm{XY}+\mathrm{H}_{2} \mathrm{O} \tag{6}
\end{equation*}
$$

and an interchange pathway has been proposed. ${ }^{23}$ The replacement of X^{-}in $\mathrm{Pt}_{2} \mathrm{X}_{2}$ by Y^{-}follows three parallel pathways. The favored pathway is a Pt_{2}-catalyzed route with rate $=k\left[\mathrm{Pt}_{2} \mathrm{X}_{2}\right]\left[\mathrm{Pt}_{2}\right]\left[\mathrm{Y}^{-}\right]$. A less efficient pathway involves Y^{-}attack on the X^{-}ligand of $\mathrm{Pt}_{2} \mathrm{X}_{2}$. The least favored pathway involves X^{-}dissociation. ${ }^{12}$ Aquation of the X^{-}ligands in $\mathrm{Pt}_{2} \mathrm{X}_{2}$ is not observed. The complex $\mathrm{Pt}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{2+}\left(\lambda_{\max } 248 \mathrm{~nm}\right)$ is prepared in solution by the oxidation of Pt_{2}.

Excited-State Electron Transfer

The triplet $\left({ }^{3} \mathrm{~A}_{2 \mathrm{u}}\right)$ state of Pt_{2} is a viable chemical reagent in part because of its long lifetime ($9 \mu \mathrm{~s}$) at ambient temperature and its high quantum yield (0.5) of formation. Triplet $\mathrm{Pt}_{2}{ }^{*}$ is a one-electron reductant in aqueous solution. The phosphorescence quenching

[^4]Table IV
Rate Constants for the Reactions of $\mathrm{Pt}_{2}{ }^{\mathbf{*}}, \boldsymbol{t}-\mathrm{BuO}{ }^{\boldsymbol{*}}$, and $\mathbf{P h}_{2} \mathbf{C O}^{*}$ with Hydrogen-Atom Donors ${ }^{a}$

substrate	$k_{\mathrm{q}}\left(\mathrm{Pt}_{2}{ }^{*}\right)$	$k\left(t-\mathrm{BuO}^{*}\right)$	$k_{\mathrm{q}}\left(\mathrm{Ph}_{2} \mathrm{CO}^{*}\right)$
$\mathrm{Et}_{3} \mathrm{SiH}$	2.0×10^{4}	5.7×10^{6}	-
$\mathrm{Ph}_{3} \mathrm{SiH}$	1.6×10^{5}	1.1×10^{7}	-
$\mathrm{Ph}_{3} \mathrm{GeH}$	2.9×10^{7}	8.9×10^{7}	-
$\mathrm{Ph}_{3} \mathrm{SnH}$	1.0×10^{8}	4.0×10^{8}	-
$\mathrm{Bu}_{3} \mathrm{SnH}$	1.2×10^{7}	2.2×10^{8}	4.7×10^{7}
$\mathrm{Bu}_{3} \mathrm{Sn} D$	6.9×10^{6}	1.8×10^{8}	-
$\mathrm{Me}_{2} \mathrm{CHOH}$	$<1 \times 10^{4}$	1.8×10^{6}	1.3×10^{6}
PhCH_{3}	$<1 \times 10^{4}$	2.3×10^{5}	1.7×10^{5}
$\mathrm{Ph}_{2} \mathrm{CHOH}$	2×10^{5}	6.9×10^{6}	8.9×10^{6}

${ }^{a}$ See ref 49 and 45 for solvents and other conditions (temperatures are all near $25^{\circ} \mathrm{C}$); k in $\mathrm{M}^{-1} \mathrm{~s}^{-1}$.
by the $1,1^{\prime}$-bis(2 -sulfoethyl)-4, 4^{\prime}-bis(pyridinium inner salt) (BSEP) gives $\operatorname{BSEP}^{-}\left(\lambda_{\text {max }} \sim 610 \mathrm{~nm}\right)$ and $\mathrm{Pt}_{2}{ }^{+} .{ }^{13}$ Similar reactions occur with nitric acid to give $\mathrm{Pt}_{2}{ }^{+}$and $\mathrm{HNO}_{3}{ }^{-}$, and with vesicle-bound N -alkyl- N -methyl-$4,4^{\prime}$-bipyridinium ions. ${ }^{39}$ Both the quenching reaction and the bimolecular back electron transfer rates are near the diffusion limit. Nicotinamide and $\mathrm{OsCl}-$ $\left(\mathrm{NH}_{3}\right)_{5}{ }^{2+}$ are also reduced by $\mathrm{Pt}_{2}{ }^{*}$, thereby making the ${ }^{3} \mathrm{~A}_{2 \mathrm{u}}$ state a stronger reductant ($E^{\circ}\left(3-/ 4^{*}\right)<-1 \mathrm{~V}$ vs NHE) than $\operatorname{Ru}(\mathrm{bpy})_{3}{ }^{2+*}\left(E^{\circ}=-0.88 \mathrm{~V}\right.$ vs NHE). ${ }^{13}$ The ${ }^{3} \mathrm{~A}_{2 u}$ state is also a one-electron oxidant (Table III). Reductive quenching of $\mathrm{Pt}_{2}{ }^{*}$ occurs with a series of added amines. The quenching rates $k_{\mathrm{q}}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ range from 1.2×10^{10} for $N, N, N^{\prime}, N^{\prime}$-tetramethyl-1,4benzenediamine (TMPD) to 1.5×10^{6} for N, N-diphenylbenzenamine, a variation corresponding to a change in $E_{1 / 2}$ from 0.11 to 0.92 V vs SCE. 40 With N, N-dimethylaniline (DMA) as a quencher, the oxidized product DMA ${ }^{+}$is observed. ${ }^{41}$

A common problem encountered in the design of chemical processes based on photoredox reactions is the difficulty of preventing back electron transfer reactions. Because the oxidized electron-transfer product $\mathrm{Pt}_{2}{ }^{+}$has available axial coordination sites, it is possible to inhibit back electron transfer by ligand addition. For example, in experiments in which a solution containing (cytochrome c) ${ }^{3+} / \mathrm{Pt}_{2}[\mathrm{NaSCN}(0.1 \mathrm{M})]$ is irradiated, the decay of photogenerated (cytochrome c) ${ }^{2+}$ to (cytochrome c) ${ }^{3+}$ is strongly inhibited by the presence of thiocyanate ion. ${ }^{42}$

Excited-State Atom Transfer

Triplet $\mathrm{Pt}_{2}{ }^{*}$ is quenched by halogen atom transfer reagents such as alkyl and aryl halides, as well as by hydrogen-atom donors such as $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}, \mathrm{PhCH}$ $(\mathrm{OH}) \mathrm{CH}_{3}, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{Et}_{3} \mathrm{SiH}$, and $\mathrm{H}_{3} \mathrm{PO}_{3}{ }^{43-48}$ No

[^5]quenching is observed with alcohols such as tert-butyl alcohol or triphenylcarbinol that have no α-hydrogens present. The relative rates for hydrogen-atom abstraction from the $\mathrm{s}^{2} \mathrm{p}^{2}$-group hydrides follow the sequence $\mathrm{Ph}_{3} \mathrm{SnH}>\mathrm{Ph}_{3} \mathrm{GeH}>\mathrm{Ph}_{3} \mathrm{SiH}$ (Table IV). This sequence qualitatively parallels that for hydrogen abstraction by tert-butoxy radicals, ${ }^{49}$ and the rate constants decrease as the $\mathrm{E}-\mathrm{H}$ bond energy increases (Sn $<\mathrm{Ge}<\mathrm{Si}$). The kinetic isotope effect for the reaction with $\mathrm{Bu}_{3} \mathrm{SnH}, k_{2}(\mathrm{H}) / k_{2}(\mathrm{D})=1.7$, accords with H -atom transfer via a linear $\mathrm{Pt}-\mathrm{H}-\mathrm{Sn}$ transition state with negligible charge transfer. ${ }^{45}$ The reactivity of $\mathrm{Pt}_{2}{ }^{*}$ toward $\mathrm{Bu}_{3} \mathrm{SnH}$ is comparable to that of the $n \pi^{*}$ excited states of ketones with similar triplet energies. Comparisons of $\mathrm{Pt}_{2}{ }^{*}\left(E_{\mathrm{t}} \sim 57.7 \mathrm{kcal} / \mathrm{mol}\right)$ and triplet benzophenone ($\mathrm{Ph}_{2} \mathrm{CO}^{*}, E_{\mathrm{t}} \sim 69 \mathrm{kcal} / \mathrm{mol}$) rate constants for hydrogen-atom abstractions are given in Table IV. ${ }^{49,45}$

For alkyl and aryl halides, the quenching rates with Pt_{2} * follow the sequence aryl iodide $>$ alkyl halide, and $\mathrm{PhI}>\mathrm{PhBr}>\mathrm{PhCl}$. The latter order parallels the ArX bond strength sequence. By transient difference spectroscopy, the first step in the reaction with alkyl and aryl halides is halogen atom abstraction by the ${ }^{3} \mathrm{~A}_{2 \mathrm{u}}$ state (reaction 7). The initial product is $\mathrm{Pt}_{2} \mathrm{X} .{ }^{43,46}$ The

$$
\begin{align*}
& \mathrm{Pt}_{2}{ }^{*}+\mathrm{RX} \rightarrow \mathrm{Pt}_{2} \mathrm{X}+\mathrm{R} \tag{7}\\
& \mathrm{Pt}_{2} \mathrm{X}_{2}+\mathrm{e}^{-} \rightarrow \mathrm{Pt}_{2} \mathrm{X}+\mathrm{X}^{-} \tag{8}
\end{align*}
$$

identification of this transient has been confirmed independently by its synthesis from the reaction of $\mathrm{Pt}_{2} \mathrm{X}_{2}$ with hydrated electrons (reaction 8). ${ }^{32} \mathrm{Pt}_{2} *$ reacts with RX in a reaction that is first order in $\mathrm{Pt}_{2}{ }^{*}$, and $\mathrm{Pt}_{2} \mathrm{X}$ decays by a pathway that is second order in $\mathrm{Pt}_{2} \mathrm{X}$. Spectroscopic data for these complexes are collected in Table II.
The first example of $\mathrm{C}-\mathrm{H}$ bond cleavage by Pt_{2} is the photochemical conversion of isopropyl alcohol to acetone and hydrogen (reaction 9). ${ }^{47}$ The photoinduced

$$
\begin{equation*}
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} \xrightarrow[\mathrm{Pt}_{2}]{h_{\nu}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \tag{9}
\end{equation*}
$$

reaction is catalytic in Pt_{2} and involves the ${ }^{3} \mathrm{~A}_{2 \mathrm{u}}$ state as a reactive intermediate. The first step is hydrogenatom abstraction of the methine hydrogen to give the radical pair $\mathrm{Pt}_{2} \mathrm{H}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}$. Supporting evidence for the formation of the isopropyl radical as an intermediate comes from the finding that pinacol, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$ $(\mathrm{OH}) \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{3}\right)_{2}$, is a byproduct in the photoreaction. The transient $\mathrm{Pt}_{2} \mathrm{H}$ has been directly observed in the abstraction of hydrogen atoms from cyclohexene, (C$\left.\mathrm{H}_{3}\right)_{2} \mathrm{CHOH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{Et}_{3} \mathrm{SiH}$, and $\mathrm{H}_{3} \mathrm{PO}_{3}$ by $\mathrm{Pt}_{2} * \cdot 43,45$ When a conventional radical chain approach was used, it was originally suggested that $\mathrm{Pt}_{2} \mathrm{H}$ reacted with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$, but kinetic studies suggest that the reaction primarily involves disproportionation of $\mathrm{Pt}_{2} \mathrm{H}$. Narrow-wavelength irradiation ($\lambda 370 \mathrm{~nm}$) of an acetonitrile solution containing Pt_{2} and either
(46) Roundhill, D. M.; Atherton, S. J. Inorg. Chem. 1986, 25, 4071-4072.
(47) Roundhill, D. M. J. Am. Chem. Soc. 1985, 107, 4354-4356.
(48) Harvey, E. L.; Stiegman, A. E.; Vlcek, A.; Gray, H. B. J. Am. Chem. Soc. 1987, 109, 5233-5235.
(49) Murov, S. L. Handbook of Photochemistry; Dekker: New York, 1973. Wagner, P. J. Acc. Chem. Res. 1971, 4, 168-177. Scaiano, J. C. J. Photochem. 1973/4, 2, 81-118. Paul, H.; Small, R. D., Jr.; Scaiano, J. C. J. Am. Chem. Soc. 1978, 100, 4520-4527. Scaiano, J. C. J. Am. Chem Soc. 1980, 102, 5399-5400. Chatgilialoglu, C.; Ingold, K. U.; Lusztyk, J.; Nazran, A. S.; Scaiano, J. C. Organometallics 1983, 2, 1332-1335.

Table V
Rate Constants for the Reactions of $\mathbf{P t}_{\mathbf{2}}{ }^{*}$ and Other Metal-Centered Radicals with Halocarbons

radical	halocarbon	solvent	$k,{ }^{a} \mathrm{M}^{-1} \mathrm{~s}^{-1}$	ref
$\mathrm{Pt}_{2}{ }^{\text {* }}$	CCl_{4}	aqueous MeOH	1.4×10^{7}	53
$\mathrm{Co}(\mathrm{CO})_{4}$	CCl_{4}	benzene	$<2.4 \times 10^{3}$	54
$\mathrm{Mn}(\mathrm{CO})_{5}$	CCl_{4}	benzene	2.8×10^{4}	54
$\mathrm{Mn}(\mathrm{CO})_{5}$	CCl_{4}	hexane	$1.4 \times 10^{6}\left(21{ }^{\circ} \mathrm{C}\right)$	55
$\mathrm{Mn}(\mathrm{CO})_{5}$	CCl_{4}	EtOH	$6.1 \times 10^{5}\left(22^{\circ} \mathrm{C}\right)$	56
$\mathrm{Re}(\mathrm{CO})_{5}$	CCl_{4}	EtOH	$3.9 \times 10^{7}\left(22{ }^{\circ} \mathrm{C}\right)$	56
$\mathrm{CpW}(\mathrm{CO})_{3}$	CCl_{4}	benzene	1.5×10^{4}	57
$\mathrm{Rh}(\mathrm{dmgH})_{2}\left(\mathrm{PPh}_{3}\right)$	CCl_{4}	EtOH	2.5×10^{5}	58
$\mathrm{Pt}_{2}{ }^{*}$	$\mathrm{CH}_{3} \mathrm{I}$	aqueous MeOH	6.7×10^{5}	43
$\mathrm{Co}(\mathrm{CN})_{5}{ }^{3-}$	$\mathrm{CH}_{3} \mathrm{I}$	aqueous MeOH	9.5×10^{-3}	58
$n-\mathrm{Bu}_{3} \mathrm{Sn}$	$\mathrm{CH}_{3} \mathrm{I}$	cyclohexane	2.5×10^{9}	60

${ }^{a}$ At $25^{\circ} \mathrm{C}$ except where noted.
$\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$, or $\mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}_{3}$ has been used to prepare $\mathrm{Pt}_{2} \mathrm{H}_{2}$ (reaction 10). ${ }^{48}$ This com$\mathrm{Pt}_{2}+\mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow{h \nu} \mathrm{Pt}_{2} \mathrm{H}_{2}+\mathrm{Ph}\left(\mathrm{CH}_{3}\right) \mathrm{CO}$
plex thermally or photochemically reductively eliminates hydrogen. The dihydride $\mathrm{Pt}_{2} \mathrm{H}_{2}$ reacts with HCl to generate H_{2} and rapidly with oxygen to give Pt_{2}. This reactivity with H^{+}supports a $\left(\mathrm{Pt}^{3+}\right)_{2}\left(\mathrm{H}^{-}\right)_{2}$ formalism, but the oxygen chemistry indicates that the complex can be viewed as $\left(\mathrm{Pt}^{2+}\right)_{2}\left(\mathrm{H}^{*}\right)_{2}$. The release of H^{*} from such a complex resembles the chemical reactivity observed for alkyl cobalt(III) complexes. In designing experiments to probe the chemical reactivity of these intermediate platinum hydride complexes, it has been found that Pt_{2} is a photochemical catalyst for the conversion of ethyl alcohol to hydrogen and acetaldehyde ${ }^{50}$ and for the transfer hydrogenation of cyclohexene and cyclopentene with isopropyl alcohol (reaction 11). ${ }^{51}$

$$
\begin{equation*}
\mathrm{C}_{n} \mathrm{H}_{2 n-2}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} \xrightarrow[n=5,6]{\mathrm{Pt}_{2}^{*}} \mathrm{C}_{n} \mathrm{H}_{2 n}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \tag{11}
\end{equation*}
$$

The reaction may be related to the hydrogenation of alkenes by $\mathrm{Co}(\mathrm{CN})_{5}^{3-}$, which involves a coordinatively saturated transition-metal hydride that can effect hy-drogen-atom transfer to give a stable one-electron-reduced transition-metal ion. ${ }^{52}$

Triplet $\mathrm{Pt}_{2}{ }^{*}$ with its $\mathrm{d} \sigma^{*}$ electron is electronically similar to the methyl radical or $\mathrm{Mn}(\mathrm{CO})_{5}$. The finding that $\mathrm{Pt}_{2}{ }^{*}$ abstracts halogen atoms from halocarbons and hydrogen atoms from aromatic hydrocarbons supports this analogy. 43,45 Among metal-centered radicals studied (Table V), ${ }^{43,53-60} \mathrm{Pt}_{2} *$ is one of the most reactive toward CCl_{4} and $\mathrm{CH}_{3} \mathrm{I}$.

Reactions with Alkenes and Alkynes. Both alkenes and alkynes react with triplet $\mathrm{Pt}_{2}{ }^{*}$. For cis- and trans-stilbenes, energy transfer leads to photoisomer-

[^6]ization. ${ }^{43,61}$ For cycloalkenes containing allylic $\mathrm{C}-\mathrm{H}$ bonds, such as cyclohexene and cyclopentene, reactions with $\mathrm{Pt}_{2}{ }^{*}$ proceed by hydrogen-atom abstraction, as evidenced by the observation of $\mathrm{Pt}_{2} \mathrm{H}$ (reaction 12). ${ }^{43}$

Other alkenes and alkynes also quench the $\mathrm{Pt}_{2}{ }^{*}$ emission; for terminal olefins, the quenching is attributable to diradical formation and energy transfer. ${ }^{43}$

Exciplex Formation and Electrochemiluminescence. Photophysical data show conclusively that triplet $\mathrm{Pt}_{2}{ }^{*}$ has a $\mathrm{Pt}-\mathrm{Pt}$ bond. It is probable, therefore, that ligation will occur in the axial positions of this triplet state. Aqueous solutions containing Pt_{2} and thallium(I) salts show no intermetallic interaction in the ground state. The emission spectrum, however, shows a shift in $\lambda_{\text {max }}$ from 514 nm in $\mathrm{Pt}_{2} *$ to 562 nm in the exciplex $\mathrm{Pt}_{2} \mathrm{Tl}^{+*}$. The triplet lifetime and quantum yield for the $\mathrm{Pt}_{2} \mathrm{Tl}{ }^{+*}$ exciplex are unchanged from those of $\mathrm{Pt}_{2}{ }^{*}$. ${ }^{62}$

When a solution of Pt_{2} is subjected to alternatingcurrent electrolysis with variable frequency, the $514-\mathrm{nm}$ luminescence of $\mathrm{Pt}_{2}{ }^{*}$ is observed ${ }^{63}$ at one electrode. The chemiluminescence has been explained ${ }^{63}$ by the generation of triplet Pt_{2} * from the electron-transfer reaction between electrochemically generated $\mathrm{Pt}_{2}{ }^{+}$and $\mathrm{Pt}_{2}{ }^{-}$. It is interesting that electrochemiluminescence also is observed ${ }^{64}$ in Pt_{2} solutions containing $\mathrm{Bu}_{4} \mathrm{~N}^{+}$under reducing conditions alone, thereby indicating that $\mathrm{Pt}_{2}{ }^{*}$ may be generated by the reaction of $\mathrm{Bu}{ }^{-}$with $\mathrm{Pt}_{2}{ }^{-}$.

Photochemistry of Diplatinum(III) Complexes

The complexes $\mathrm{Pt}_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{SCN})$ and $\mathrm{Pt}_{2} \mathrm{py}_{2}{ }^{2+}$ exhibit a strong red luminescence at $77 \mathrm{~K} .{ }^{65}$ The vibronic fine structure of the emission bands shows that the excited state is very strongly distorted along the $\mathrm{Pt}-\mathrm{Pt}$ coordinate, and the emissive excited state has $\mathrm{d} \sigma^{*}$ character. These photophysical experiments correlate with the photochemistry of $\mathrm{Pt}_{2} \mathrm{X}_{2}$. The substitution of X^{-}in $\mathrm{Pt}_{2} \mathrm{X}_{2}$ by Y^{-}is markedly accelerated by light, and

[^7]the conversion to Pt_{2} and X_{2} is photoinduced. ${ }^{12}$ In methanol, $\mathrm{Pt}_{2} \mathrm{X}_{2}$ is efficiently photoreduced to Pt_{2}. As this chemistry develops, it will be useful to compare the excited state reactivities with $17 \mathrm{e}^{-}$monomers and other trapped diradical species.

Methylenebis(phosphito) Complexes

An analogue complex $\mathrm{Pt}_{2}(\mathrm{pcp})_{4}{ }^{4-}$ having a methylenic bridge between coordinated phosphorus atoms has been prepared from $\mathrm{CH}_{2}(\mathrm{PH}(\mathrm{O}) \mathrm{OH})_{2}\left(\mathrm{pcpH}_{2}\right)^{66}$ This complex shows many structural and spectroscopic features that are similar to Pt_{2}. The $\mathrm{Pt}-\mathrm{Pt}$ distance in $\mathrm{Pt}_{2}-$ (pcp) ${ }_{4}{ }^{4-}$ is 2.980 (1) \AA, as compared to 2.925 (1) \AA in Pt_{2}. Absorption bands are observed at $382\left(\epsilon 2.9 \times 10^{4}\right)$ and $470 \mathrm{~nm}\left(\epsilon 142 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, and the singlet and triplet emissions are observed at 420 and 510 nm , respectively. Triplet $\mathrm{Pt}_{2}(\mathrm{pcp})_{4}{ }^{4-}$ also undergoes electron-transfer and atom-transfer reactions. The major difference between $\mathrm{Pt}_{2}(\mathrm{pcp})_{4}{ }^{4-}$ and Pt_{2} is in the triplet lifetimes. In the solid state, the ambient-temperature lifetimes are closely similar, being $7.3 \mu \mathrm{~s}$ for $\mathrm{Pt}_{2}(\mathrm{pcp})_{4}{ }^{4-*}$ and $9.5 \mu \mathrm{~s}$ for $\mathrm{Pt}_{2}{ }^{*}$. In aqueous solution, the $\mathrm{Pt}_{2}{ }^{*}$ lifetime is unchanged, but the $\mathrm{Pt}_{2}(\mathrm{pcp})_{4}{ }_{4}{ }^{4-*}$ lifetime is reduced to $0.055 \mu \mathrm{~s}$. The decay of $\mathrm{Pt}_{2}(\mathrm{pcp})_{4}{ }^{4-*}$ has a thermal activation barrier ($\sim 1100 \mathrm{~cm}^{-1}$) that likely is associated with torsional motions in the binucleating ligand framework. ${ }^{67}$

Concluding Remarks

The chemistry of $\mathrm{Pt}_{2}{ }^{*}$ shows both similarities to and differences from that ${ }^{68}$ of $\left.R u(b p y)\right)_{3}{ }^{2+*}$. In $R u(b p y)_{3}{ }^{2+}$, MLCT absorption results in an electron being transferred from $\mathrm{Ru}(\mathrm{II})$ to one of the bpy ligands, ${ }^{69}$ but in Pt_{2} the excited state is formed by a transition between metal-centered molecular orbitals ($\mathrm{d} \sigma^{*} \rightarrow \mathrm{p} \sigma$). As a result, both electrons of triplet (diradical) $\mathrm{Pt}_{2}{ }^{*}$ are localized on the platinum atoms. Both $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+*}$ and

[^8]$\mathrm{Pt}_{2}{ }^{*}$ are oxidants and reductants in reactions with organic or inorganic reagents. For $\mathrm{Pt}_{2}{ }^{*}$, however, in contrast to $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+*}$, reactions can occur by an in-ner-sphere pathway at the vacant axial-ligand Pt site. It is becoming clear that $\mathrm{Pt}_{2}{ }^{*}$ also can react as a free radical, because it possesses an unpaired electron in a frontier orbital ($\mathrm{d} \sigma^{*}$) that is localized at an axial coordination site. This free-radical reactivity of $\mathrm{Pt}_{2}{ }^{*}$ is shown in atom-transfer reactions that occur with no prior electron-transfer step.
The free-radical reactivity of $\mathrm{Pt}_{2}{ }^{*}$ strongly resembles that found for ketone $n \pi^{*}$ triplets and metal carbonyl and alkoxy radicals. ${ }^{49}$ However, unlike most organic radicals, ${ }^{3} \mathrm{Pt}_{2}{ }^{*}$, because of its μ-pyrophosphito ligands, presents a fairly bulky, hydrophilic axial-site interaction surface to an incoming substrate. Accordingly, ${ }^{3} \mathrm{Pt}_{2}{ }^{*}$ has the potential to be more selective than alkoxy radicals in atom abstractions. Work to date suggests that allylic $\mathrm{C}-\mathrm{H}$ bonds of substituted olefins and benzylic C-H bonds of aromatic hydrocarbons are homolytically cleaved quite rapidly by ${ }^{3} \mathrm{Pt}_{2}$. Additional research could conceivably expand the range of this reaction to the point where it will be possible to achieve photochemical activation of secondary/primary C-H bonds in preference to tertiary $\mathrm{C}-\mathrm{H}$ in saturated hydrocarbons.
The work that has been done on platinum pop has established some guidelines for the occurrence of ex-cited-state atom-transfer reactions of metal complexes. It seems highly likely that this type of reaction will soon be an important part of the armamentarium of inorganic photochemistry and photocatalysis.

We thank M. H. Zietlow, E. L. Harvey, D. C. Smith, P. J. Sadler, J. K. Nagle, and E. A. Boudreaux for providing information prior to publication and for many helpful discussions. Our research has been supported by the National Science Foundation (H.B.G.), the Sun Company (H.B.G.), the Petroleum Research Fund, administered by the American Chemical Society (D.M.R.), the Louisiana Board of Regents (D.M.R.), the Croucher Foundation (C.-M.C.), and the University of Hong Kong (C.M.C.).

Registry No. $\mathrm{K}_{4}\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}\right]$, 80011-26-3; $\mathrm{K}_{2} \mathrm{PtCl}_{4}$, 10025-99-7; Pt, 7440-06-4; $\mathrm{H}_{2}, 1333-74-0$.

[^0]: D. Max Roundhill graduated from Oxford University in 1965 and did his Ph.D. thesis with G. Wilkinson at Imperial College, London. He was a postdoctoral fellow at Tulane University with H. B. Jonassen, and then he joined the faculty at Washington State University in 1968. In 1983 he returned to Tulane University as Professor of Chemistry.

 Harry B. Gray worked with Fred Basolo and Ralph G. Pearson at Northwestern University (1957-60) and was an NSF Postdoctoral Fellow whth Car J. Ballhausen in Copenhagen (1960-61). After a pertod on the faculty at Columbia University (1961-66), he moved to the California Institute of Technology, where he is now the Arnold O. Beckman Protessor of Chemistry and Director of the Beckman Insittute.

 Chl-Ming Che studled whth Chung-Kwong Poon at the University of Hong Kong (1978-80) and with Harry B. Gray at the Californla Insttute of Technology (1980-83). He recelved a Ph.D. in 1982 from the Universty of Hong Kong, where he is now Lecturer in Chemistry.

[^1]: ${ }^{1}$ Contribution No. 7795 from the California Institute of Technology.
 (1) Miller, J. S. Extended Linear Chain Compounds; Plenum: New York, 1982; Vols. 1-3.
 (2) Cowman, C. D.; Ballhausen, C. J.; Gray, H. B. J. Am. Chem. Soc. 1973, 95, 7873-7875.
 (3) Mann, K. R.; Gordon, J. G., II; Gray, H. B. J. Am. Chem. Soc. 1975, 97, 3553-3555. Nocera, D. G.; Maverick, A. W.; Winkler, J. R.; Che, C.-M.; Gray, H. B. ACS Symp. Ser. 1983, No. 211, 21-33.
 (4) Miller, J. S.; Weagley, R. J. Inorg. Chem. 1977, 16, 2965-2966.
 (5) Miller, J. S.; Epstein, A. J. Prog. Inorg. Chem. 1976, 20, 1-151. Williams, J. M. Adv. Inorg. Chem. Radiochem. 1983, 26, 235-268.
 (6) Muraveiskaya, G. S.; Kukina, G. A.; Orlova, V. S.; Evstafeva, O. N.; Porai-Koshits, M. A. Dokl. Akad. Nauk SSSR 1976, 226, 76-79. Cotton, F. A.; Falvello, L. R.; Han, S. Inorg. Chem. 1982, 21, 2889-2891. El-Mehdawi, R.; Fronczek, F. R.; Roundhill, D. M. Inorg. Chem. 1986, 25, 1155-1159; 3714-3716. Conder, H. L.; Cotton, F. A.; Falvello, L. R.; Han, S.; Walton, R. A. Inorg. Chem. 1983, 22, 1887-1891. Cotton, F. A.; Falvello, L. R.; Han, S. Inorg. Chem. 1982, 21, 1709-1710. Cotton, F. A.; Han, S.; Conder, H. L.; Walton, R. A. Inorg. Chim. Acta 1983, 72, 191-193. Hollis, L. S.; Lippard, S. J. Inorg. Chem. 1982, 21, 2116-2117. Schagen, J. D.; Overbeek, A. R.; Schenk, H. Inorg. Chem. 1978, 17, 1938-1940.
 (7) O'Halloran, T. V.; Roberts, M. M.; Lippard, S. J. Inorg. Chem. 1986, 25, 957-964. Bellitto, C.; Bonamico, M.; Dessy, G.; Fares, V.; Flamini, A. J. Chem. Soc., Dalton Trans. 1986, 595-601.
 (8) Woollins, J. D.; Kelly, P. F. Coord. Chem. Rev. 1985, 65, 115-140. Cotton, F. A.; Walton, R. A. Multiple Bonds Between Metal Atoms; Wiley: New York, 1982. O'Halloran, T. V.; Lippard, S. J. Isr. J. Chem. 1985, 25, 130-137. Zipp, A. P. Coord. Chem. Rev. 1988, 84, 47-83.
 (9) Che, C.-M.; Herbstein, F. H.; Schaefer, W. P.; Marsh, R. E.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4604-4607.

[^2]: (10) Sperline, R. P.; Dickson, M. K.; Roundhill, D. M. J. Chem. Soc., Chem. Commun. 1977, 62-63. Alexander, K. A.; Bryan, S. A.; Dickson, M. K.; Hedden, D.; Roundhill, D. M. Inorg. Synth. 1986, 24, 211-213.
 (11) Filomena Dos Remedios Pinto, M. A.; Sadler, P. J.; Neidle, S.; Sanderson, M. R.; Subbiah, A.; Kuroda, R. J. J. Chem. Soc., Chem. Commun. 1980, 13-15. Marsh, R. E.; Herbstein, F. H. Acta Crystallogr., Sect. B 1983, 39, 280-287.
 (12) Bryan, S. A.; Dickson, M. K.; Roundhill, D. M. Inorg. Chem. 1987, 26, 3878-3886. Che, C.-M.; Lee, W.-M.; Cho, K.-C. J. Am. Chem. Soc. 1988, 110, 5407-5411.
 (13) Che, C.- M.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 7796-7797. Fordyce, W. A.; Brummer, J. G.; Crosby, G. A. J. Am. Chem. Soc. 1981, 103, 7061-7064.

[^3]: (22) Che, C.-M.; Schaefer, W. P.; Gray, H. B.; Dickson, M. K.; Stein, P. B.; Roundhill, D. M. J. Am. Chem. Soc. 1982, 104, 4253-4255. Che, C.-M.; Mak, T. C. W.; Gray, H. B. Inorg. Chem. 1984, 23, 4386-4388. (23) Che, C.-M.; Lau, T. C.; Lo, C. F.; Poon, C. K.; Gray, H. B. Inorg. Chem., in press.
 (24) Alexander, K. A.; Bryan, S. A.; Fronczek, F. R.; Fultz, W. C.; Rheingold, A. L.; Roundhill, D. M.; Stein, P.; Watkins, S. F. Inorg. Chem. 1985, 24, 2803-2808.
 (25) Bryan, S. A.; Dickson, M. K.; Roundhill, D. M. J. Am. Chem. Soc. 1984, 106, 1882-1883.
 (26) Bryan, S. A.; Schmehl, R. H.; Roundhill, D. M. J. Am. Chem. Soc. 1986, 108, 5408-5412.
 (27) Hedden, D.; Roundhill, D. M.; Walkinshaw, M. D. Inorg. Chem. 1985, 24, 3146-3150.
 (28) Che, C.-M.; Butler, L. G.; Grunthaner, P. J.; Gray, H. B. Inorg. Chem. 1985, 24, 4662-4665. Che, C.-M.; Mak, T. C. W.; Miskowski, V. M.; Gray, H. B. J. Am. Chem. Soc. 1986, 108, 7840-7841. Che, C.-M.; Lee, W.-M.; Mak, T. C. W.; Gray, H. B. J. Am. Chem. Soc. 1986, 108, 4446-4451.
 (29) Clark, R. J. H.; Kurmoo, M.; Dawes, H. M.; Hursthouse, M. B. Inorg. Chem. 1986, 25, 409-412.

[^4]: (37) Che, C.-M.; Atherton, S. J.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1984, 106, 5143-5145.
 (38) Alexander, K.; Stein, P.; Hedden, D.; Roundhill, D. M. Polyhedron 1983, 12, 1389-1392.

[^5]: (39) Che, C.-M.; Cho, K.-C. J. Chem. Soc., Chem. Commun. 1987, 133-134. Hurst, J. K.; Thompson, D. H. P.; Connolly, J. S. J. Am. Chem. Soc. 1987, 109, 507-515.
 (40) Heuer, W. B.; Totten, M. D.; Rodman, G. S.; Hebert, E. J.; Tracy, H. J.; Nagle, J. K. J. Am. Chem. Soc. 1984, 106, 1163-1164.
 (41) Peterson, J. R.; Kalyanasundaram, K. J. Phys. Chem. 1985, 89, 2486-2492.
 (42) Che, C.-M.; Cho, K. C.; Chan, W.-S.; Gray, H. B. Inorg. Chem. 1986, 25, 4906-4909.
 (43) Roundhill, D. M.; Shen, Z.-P.; King, C.; Atherton, S. J. J. Phys. Chem. 1988, 92, 4088-4094. Che, C.-M.; Lee, W.-M.; Cho, K.-C.; Harvey, P. D.; Gray, H. B. J. Phys. Chem., in press. Che, C.-M.; Lee, W.-M.; Cho, K.-C., unpublished results.
 (44) Roundhill, D. M.; Dickson, M. K.; Atherton, S. J. J. Organomet. Chem. 1987, 335, 413-422.
 (45) Marshall, J. L.; Stiegman, A. E.; Gray, H. B. ACS Symp. Ser. 1986, No. 307, 166-176. Vlcek, A.; Gray, H. B. J. Am. Chem. Soc. 1987, 109, 286-287. Roundhill, D. M.; Atherton, S. J.; Shen, Z.-P. J. Am. Chem. Soc. 1987, 109, 6076-6079. Vlcek, A.; Gray, H. B. Inorg. Chem. 1987, 26, 1997-2001. Vlcek, A. Proc. Conf. Coord. Chem. 1987, 11th, 457-462.

[^6]: (50) Harvey, P. D.; Gray, H. B. New J. Chem. 1987, 11, 595-596. (51) Che, C.-M.; Lee, W.-M. J. Chem. Soc., Chem. Commun. 1986, 512-513.
 (52) Kwiatek, J. Catal. Rev. 1967, 1, 37-72.
 (53) Shen, Z.-P., unpublished results.
 (54) Abrahamson, H. B.; Wrighton, M. S. J. Am. Chem. Soc. 1977, 99, 5510-5512.
 (55) Herrick, R. S.; Herrinton, T. R.; Walker, H. W.; Brown, T. L. Organometallics 1985, 4, 42-45.
 (56) Meckstroth, W. K.; Walters, R. T.; Waltz, W. L.; Wojcicki, A.; Dorfman, L. M. J. Am. Chem. Soc. 1982, 104, 1842-1846.
 (57) Laine, R. M.; Ford, P. C. Inorg. Chem. 1977, 16, 388-391.
 (58) Espenson, J. H.; Tinner, U. J. Organomet. Chem. 1981, 212, C43-C46. Chock, P. B.; Halpern, J. J. Am. Chem. Soc. 1969, 91, 582-588.
 (59) Pearson, R. G.; Figdore, P. E. J. Am. Chem. Soc. 1980, 102, 1541-1547.
 (60) Carlsson, D. J.; Ingold, K. U. J. Am. Chem. Soc. 1968, 90 , 7047-7055.

[^7]: (61) Roundhill, D. M.; Shen, Z.-P.; Atherton, S. J. Inorg. Chem. 1987, 26, 3833-3835.
 (62) Nagle, J. K.; Brennan, B. A. J. Am. Chem. Soc. 1988, 110, 5931-5932.
 (63) Vogler, A.; Kunkely, H.; Schäffl, S. ACS Symp. Ser. 1986, No. 307, 120-134. Vogler, A.; Kunkely, H. Angew. Chem., Int. Ed. Engl. 1984, 23 , 316-317.
 (64) Kim, J.; Fan, F. F.; Bard, A. J.; Che, C.-M.; Gray, H. B. Chem. Phys. Lett. 1985, 121, 543-546.
 (65) Stiegman, A. E.; Miskowski, V. M.; Gray, H. B. J. Am. Chem. Soc. 1986, 108, 2781-2782.

[^8]: (66) King, C.; Auerbach, R. A.; Fronczek, F. R.; Roundhill, D. M. J. Am. Chem. Soc. 1986, 108, 5626-5627.
 (67) King, C.; Yin, Y.; McPherson, G. L.; Roundhill, D. M. J. Phys. Chem., in press.
 (68) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159-244.
 (69) Myrick, M. L.; Blakley, R. L.; DeArmond, M. K. J. Am. Chem. Soc. 1987, 109, 2841-2842.

